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Abstract

In July 2012, protestors cut through security fences and gained access to the Y-12 
National Security Complex. This was believed to be a highly reliable, multi-layered 
security system. This report documents the results of a Laboratory Directed Research 
and Development (LDRD) project that created a consistent, robust mathematical 
framework using complex systems analysis algorithms and techniques to better 
understand the emergent behavior, vulnerabilities and resiliency of multi-layered 
security systems subject to budget constraints and competing security priorities. 
Because there are several dimensions to security system performance and a range of 
attacks that might occur, the framework is multi-objective for a performance frontier 
to be estimated. This research explicitly uses probability of intruder interruption given 
detection (PI) as the primary resilience metric. We demonstrate the utility of this 
framework with both notional as well as real-world examples of Physical Protection 
Systems (PPSs) and validate using a well-established force-on-force simulation tool, 
Umbra.
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DOE Department of Energy
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1. INTRODUCTION

The configuration of layered security measures is at the center of efforts to protect a range of 
systems, from high-value facilities to large-scale infrastructures. Historically, analyses of 
security systems have been performed using directed graph and path analysis tools like 
Adversary Sequence Diagrams (ASD). However, there are many dimensions in the design 
space of a security system, including selection of technologies, alternative 
locations/configurations, different threats, and competing cost limitations. The 
dimensionality of this problem makes it effectively impossible to evaluate all permutations of 
potential system architectures using traditional methods. The experience of the individuals 
configuring the system drives the careful examination of a small subset of architectures.

The key goal of this Laboratory Directed Research and Development (LDRD) is the creation 
of a consistent, robust mathematical framework using complex systems analysis algorithms 
and techniques to better understand the emergent behavior, vulnerabilities and resiliency of 
multi-layered security systems subject to budget constraints and competing security 
priorities. Because there are several dimensions to security system performance and a range 
of attacks that might occur, the framework must be multi-objective for a performance frontier 
to be estimated. Since security measures can fail for a range of reasons, this research 
explicitly includes resiliency as a dimension of system performance.

The tools developed under this project can directly benefit the Department of Energy (DOE) 
and the National Nuclear Security Administration (NNSA) as well as other federal agencies 
such as the Department of Homeland Security (DHS) and the International Atomic Energy 
Agency (IAEA). All agencies have goals, objectives, or mandates related to protecting 
material (chemical, biological, radiological, and nuclear), facilities, or supply chains in a 
fiscally responsible manner. For example, the NNSA strategic plan specifically states an 
objective to “improve understanding of the interaction between risk and cost. The NNSA will 
execute programs at the lowest cost without sacrificing either critical mission elements or our 
commitment to operating in a safe, secure, and environmentally sound manner.”

This document describes the capabilities developed over the span of the LDRD, including the 
associated applications.  The first section of this document describes the key concepts and 
technical approach, but relies heavily on referencing the publications that we produced as a 
result of this effort. The second section describes our validation using Dante/Umbra. Since 
we were not able to gain access to alarm station operator (ASO) data, we used CCTV 
operators as a surrogate and conducted a separate literature review which appears in the 
appendix.
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2. SUMMARY OF TECHNICAL APPROACH

The key goal of this LDRD was to create a mathematical framework to better understand the 
emergent behavior, vulnerabilities, and resiliency of multi-layered security systems subject to 
budget constraints and competing security priorities. This goal required that we:

 Create a mathematical representation of a multi-layered security system represented 
as a complex system.

 Provide insight into the trade-off between performance and cost.
 Generate investment strategies with resilience metrics that can be independently 

validated.

In order to achieve these goals, we had to create the following artifacts:
 A model of the security architecture of a physical protection system (PPS) as 

informed by the Physical Security Center of Excellence.
 A representation of the “human element” including intruder behavior and Alarm 

Station Operator (ASO) performance as impacted by nuisance and false alarm rates 
(NAR/FAR).

 An optimization to estimate the triple-objective trade-off frontier: probability of 
interruption (PI, primary resilience metric), investment cost, and NAR/FAR.

The following sections describe the technologies we used to create these different artifacts.

2.1. Model of a Physical Protection System

We use a network of nodes and arcs to represent a PPS, where each node maps a physical 
location, and each arc defines the path between two nodes.  Zero or more investments can be 
made on each arc and can include either detection elements (sensors) or delay elements 
(barriers such as fences or walls).  Figure 1 shows a network representation of a simple PPS 
where an intruder can enter from any perimeter node and desires to reach the magenta node 
at the center. Once an intruder is detected, the response force is notified and must intercept 
(interrupt) the intruder before he/she reaches the target (a.k.a., “hands on target”).  Our initial 
approach to computing the probability of interruption assumed a constant response force time 
(RFT) and constant intruder travel times across each link (though different links may have 
different travel times due to the addition of delay investments) and is described in [1]. 
Though a fairly standard approach, this method only includes the uncertainty of detection and 
not the uncertainty of the various travel times. To improve this model, we introduced 
uncertainty around the RFT in the form of exponentially distributed times as described in [2]. 
Unfortunately, the assumption of an exponentially distributed RFT forced us to use a 
simulation which was fairly compute-intensive. We improved this approach by assuming that 
all travel times (both intruder as well as response force) are Gaussian in nature, which 
allowed us to efficiently add time uncertainty to the PI calculation without significant loss of 
generality. Additionally, we wanted to account for network impacts due to lighting and 
weather effects as well as intruders with enhanced skills, which would be seen as variations 
in performance for the various detection and delay elements. The addition these new sources 
of model uncertainty are described in [4].
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Figure 1: PPS Network Model with Single-Arc Investments

2.2. Representation of the “Human Element”

We addressed two different aspects of the human element in our model: the intruder and the 
ASO. For the intruder, we assume that they have perfect knowledge of the physical layout of 
the PPS that they wish to infiltrate. Given this knowledge, they will always take the path that 
provides them with the lowest PI, often referred to as the most vulnerable path (MVP). The 
description of how this path is determined appears in [1] (no time or weather uncertainty), [2] 
(uncertainty in the RFT) and [4] (uncertainty in the RFT, intruder travel times, and 
lighting/weather effects). To enhance the intruder model, we included the possibility that 
some intruders have “enhanced” knowledge of the sensors and barriers such that they can 
degrade the system’s performance as described in [4]. 
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For the ASO, we wanted to create a representation such that they could be viewed as an 
integral part of the PPS that could be enhanced with greater investment. In [1], [2] and [5], it 
is assumed that there is a sufficient number of ASOs available such that every sensor 
detection is immediately assessed and reported to the response force. Our use of NAR/FAR 
minimization in the optimization was meant to ensure that the ASOs would not be 
overwhelmed by a high number of alarms. To improve upon this model, we incorporated 
three new elements as described in [3]: a minimum alarm assessment and communication 
time, the impact of alarm queuing due to elevated NAR/FAR, and the effect of trust lag time 
which can occur if the ASO views the system as unreliable (due to high NAR/FAR). With 
this improved model, an investment in more ASOs is reflected as a decrease in overall RFT 
which results in a higher PI. Conversely, architectures which utilize a large number of sensors 
without a sufficient number of ASOs can be eliminated as candidates since the sheer number 
of false alarms can make it impossible to process an alarm in a timely manner (i.e., before the 
intruder gets hands on target). 

Our standard queuing model assumes that all alarms are of equal importance, an assumption 
unlikely to be true in practice.  In the context of a high consequence security system, it may 
be advantageous to assess specific alarm types ahead of others. A priority queue allows 
events to be serviced based upon an exogenous ranking of importance; events of higher 
priority will be serviced first. Further, priority queues can help avoid deadlock conditions by 
allowing high-priority events to be seen, even when the overall arrival rate of events is higher 
than the rate at which they can be serviced. For these reasons, we developed a priority queue 
model which establishes priority based on distance from target, where the sensors with the 
highest priority are those located closest to the target. In scenarios with high NAR/FAR, the 
use of a priority queue results in a higher PI and lowers the required number of ASOs 
compared to a standard queue.

When developing a priority queue model, there are many choices that must be made. After 
talking to PPS experts, we chose to model the PPS using a preemptive repeat priority queue.  
Preemptive refers to the fact that high-priority sensors can preempt lower-priority ones, 
interrupting their service and sending them back to the front of the queue. When an 
interrupted sensor gets reassessed later, we assume that this assessment is repeated (not 
resumed), meaning that the process starts over from the beginning as if the sensor was being 
assessed for the first time. We also assume that the time between sensor activations is 
exponentially distributed corresponding to a Poisson arrival process and that the time taken 
by ASOs to service an alarm is normally distributed with a coefficient of variation of 0.1.  
These assumptions lead to non-parametric skewed-normal distributions of alarm waiting plus 
assessment times (see Figure 2, for example), precluding the use of an analytical 
approximation of the expected values.  
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Figure 2: Distribution of Sampled Service (Wait + Assessment) Times for a Three-
Level Priority Queue

Given a PPS architecture with known sensor placement, service times, and NAR/FAR, we 
calculate the expected value of PI using simulation. In our simulation, sensor events are 
generated randomly according to their NAR/FAR, and the alarms are serviced based upon 
their arrival order and sensor priority. Queue wait plus assessment times, RFTs, and link 
travel times are sampled and converted to a binomial random variable that indicates whether 
or not an intruder successfully reaches the target given that a sensor with a specific priority 
level is triggered. The binomial random variables corresponding to each sensor priority are 
sampled until a predefined level of confidence of the expected value is obtained, giving us an 
estimate for , the probability of interruption given that the intruder was detected by a 𝑃(𝑘)𝐼
sensor with priority level .𝑘

Confidence is defined in terms of two parameters,  and , such that the simulation stops 𝛼 𝜀
once the sampled binomial probabilities are within  of the true expected value with a 𝜀
confidence probability of  . We use two formulas to determine the current level of 1 ‒ 𝛼
confidence. For the case where the sampled binomial random variable has produced events of 
only one type (either all successes or failures), we use the generalized form of the Rule of 
Three [7]:

        (1)
𝜀=

‒ log 𝛼
𝑛

where  refers to the number of samples taken. If samples of each type exist, we use the 𝑛
normal approximation interval:

       (2)
𝜀= 𝑧

1 ‒
𝛼
2

𝑝(1 ‒ 𝑝)
𝑛

where  refers to the number of samples taken,  refers to the  quantile of a Gaussian 𝑛 𝑧𝜎 𝜎
distribution, and  refers to the proportion of successes. In the case where low-priority sensor 𝑝
wait times cannot be sampled due to non-ergodic queue conditions (the low-priority events 
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are ‘frozen out’ by higher-priority events),  for that specific sensor priority level is 𝑃(𝑘)𝐼
assumed to be zero.

Once  is estimated for each priority level , we can calculate the probability that an 𝑃(𝑘)𝐼 𝑘
intruder is successful by taking the product (across all priority levels) of the probabilities that 
the intruder either 1) avoids detection by a sensor having the specific priority level, or 2) 
triggers the sensor but is able to reach the target before the sensor is assessed and responded 
to. The overall probability of interruption is simply the complement of this probability of 
intruder success:

      (3)
𝑃𝐼= 1 ‒∏

𝑘
([1 ‒ 𝑃(𝑘)𝐷 ] + 𝑃(𝑘)𝐷 [1 ‒ 𝑃(𝑘)𝐼 ])

where  is the probability that the intruder is detected by a sensor with priority level .  𝑃(𝑘)𝐷 𝑘

To test the general effectiveness of a priority queue model, we performed two experiments.  
First, we measured PI for queues having one, two, and three priority levels as the NAR/FAR 
varied. For simplicity, the priority levels were assumed to be equidistant from the target, and 
each priority level was given an equal alarm arrival rate. The results demonstrate that 
splitting queues into multiple priority levels allows for more robust performance as 
NAR/FAR increases (see Figure 3). Using a standard queue with high NAR/FAR, it is likely 
that no sensor would ever be assessed quickly enough to interrupt the intruder. Using a 
priority queue, at least those sensors having the highest priority will be assessed in sufficient 
time to possibly lead to intruder interruption.

Figure 3: PI vs. NAR/FAR for Queues having One, Two, and Three Priority Levels

Next, we examined the effect that the number of ASOs has on queues with one, two, and 
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three priority levels, given high NAR/FAR. Similar to the previous experiment, NAR/FAR 
and distance from the target were assumed to be equal across priority levels. The results 
show that queues split into priority levels are able to operate successfully with fewer ASOs in 
situations where standard queues struggle (see Figure 4).

Figure 4: PI vs. No. of ASOs for Queues having One, Two, and Three Priority Levels

Based on these results, it is clear that priority queues possess a distinct advantage over 
standard queues in scenarios having high NAR/FAR. Priority queues are able to remain 
functional in situations where arrival rates are higher than service rates because they provide 
a mechanism for ASOs to ignore low-priority signals, guaranteeing quick service and 
response to higher-priority events. The GA optimizer is able to detect these scenarios and 
either remove the superfluous low-priority sensors to save money or increase the number of 
ASOs to improve performance.

We assigned priority levels to sensors based on a scheme where the sensors with the highest 
priority are those located closest to the target.  Future work would examine alternative 
prioritization strategies. For example, while it is critical to detect intruders who have 
managed to get close to the target, it may be more beneficial to prioritize detecting them 
upon their initial arrival to give the response team more time to perform a successful 
interruption.  Alternatively, sensors might be prioritized based upon their relative confidence 
and reliability; giving precedence to sensors with low NAR/FAR and high detection rates.

2.3. Investment Planning Optimization 

At the heart of our investment planning optimization is a game-theoretic attacker-defender 
model.  The main ideas behind this approach are:
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 Intruder goal: Minimize the probability that the travel time remaining after detection 
will exceed the response time of the protective force (probability of interruption).

 System owner goal: Maximize the probability that the intruder will be interrupted given 
that the intruder can adapt to different investment strategies.

 System owner decision: What technologies and physical barriers to invest in and where 
to place them subject to budget and false alarm rate limits.

One approach to solving this problem could be to examine all possible architecture 
permutations and simulate the attacker-defender response for each architecture. To illustrate 
why this approach is not feasible, we refer once again to our network model of a PPS. For 
even the small PPS representation of Figure 1, there are 420 arcs. If we assume six different 
investment types, then there can be up to 64 different investment permutations per arc. The 
number of investment permutation for the entire network is then 64420 or about 10758 (greater 
than the number of particles in the universe!). By comparison, our “real world” example of 
SNL’s Tech Area V has roughly 4800 arcs which results in approximately 108670 
permutations. 

Since an optimization-via-simulation approach is not feasible with even a modestly-sized 
PPS, we considered two different mathematical approaches to solving this problem: Mixed-
Integer Linear Program (MILP) and metaheuristic.  The advantage of the MILP is that it 
provides an elegant, provably optimal, closed-form solution.  Unfortunately, this approach 
does not scale well to large networks.  The work on this approach was initiated in 2014, but 
has been refined and submitted as [4]. 

The metaheuristic approach uses a genetic algorithm (GA) to perform a multi-objective 
optimization trading off investment cost, NAR/FAR, and PI. The advantages of the GA 
approach are that it has a more flexible implementation, scales well to large problems, and is 
HPC-compatible (due to its parallel implementation). The disadvantage of this approach is 
that there is no guarantee of optimality in the solutions produced. Our initial foray was 
presented at the 82nd MORS Symposium (2014) in Working Group 28 and was nominated for 
the Barchi Prize (best symposium paper).  In response to this nomination, we generated a 
paper more fully describing the details of what was presented in [1]. Due to extenuating 
circumstances at MORS (possibly related to a vacancy in the editor position), this paper was 
never accepted for publication, but still represents a major milestone for this project.

A significant improvement to the optimization approach made in [4] over the previous 
approach is the use of investment layers instead of individual arc investments. In this context, 
an investment layer is a collection of same-type arc investments which form a closed 
perimeter around the target as shown in Figure 5. The advantage of this approach is that it 
reduces the number of permutations by several orders of magnitude while utilizing a 
reasonable investment strategy that would likely be employed in practice. The main 
disadvantage is that the investment placement is more restricted and may not allow for fully 
optimal solutions.
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Figure 5: PPS Network Model with “Layered” Investments

As previously mentioned, the only source of uncertainty in our initial PPS model was the 
probability of detection (PD) for each sensor. Our final GA-based investment optimization 
procedure (as described in [4]) includes the following sources of uncertainty:

 RFT (Gaussian RV)
 Arc travel time (Gaussian RV)
 ASO assessment and standard queue wait times (Gaussian RV)
 Environmental and lighting impacts (scenario-based)
 Intruder capabilities (scenario-based)

In order to address the last two sources, a stochastic optimization approach had to be taken. 
The stochastic optimization requires that we evaluate the architecture’s PI for each 
weather/intruder scenario (where the technology performance varies according to the 
scenario) and optimize against the worst case value across all scenarios.  The advantage of 
this approach becomes clear when compared to two alternate approaches that might be 
chosen by a naïve designer:

 Use the average value PI across all scenarios as the performance metric
 Create an “average” architecture which uses the average sensor/barrier values (across 

all scenarios) to conduct a single scenario optimization

For the first case study, we compare the worst-case PI against the average PI across all 
scenarios. The plot in Figure 6 illustrates that selecting an architecture based on the average 
PI could leave the PPS vulnerable to the worst case where the PI is always lower (often 
substantially).  Each point in the plot represents a solution on the Pareto Frontier.
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Figure 6: Worst Case vs. Average PI

For the second case study, we determine the average performance value for each technology 
investment across all scenarios. We can then perform a single scenario optimization which 
produces architectures based on these average performance values. When comparing the PI 
from the average architecture to the true average across all scenarios (as shown in Figure 7), 
we see that the scenario-average PI is much lower.  When compared to the worst-case (WC) 
PI across all scenarios, the differential is even more stark (as shown in Figure 8). 
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Figure 7: Average Architecture PI vs Scenario-Average PI
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Figure 8: Average Architecture PI vs Worst Case PI
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3. VALIDATION USING DANTE/UMBRA

In order to validate our methodology for calculating PI for a given PPS architecture, we used 
the Dante Scenario Editor, which is built upon a well-established force-on-force simulation 
tool, the Sandia-developed Umbra Simulation Framework [6]. This validation process 
consists of two main steps: scenario creation and batch analysis. In order to illustrate the 
process, we will examine a PPS based on SNL’s Tech Area V (TA-V).

3.1. Dante Scenario Creation

To create a PPS scenario, Dante first loads in 3D terrain data for the site of interest, and then 
produces a 2D grid overlay with a resolution that matches the one used by the MLS 
optimization engine. Dante then removes nodes (colored red) that overlap with buildings and 
other terrain objects that a person could not pass through. Figure 9 shows the loaded TA-V 
terrain data with an overlay grid resolution of 10 meters.

Figure 9: TA-V 3D Terrain Data with 2D Grid Overlay

Next, Dante imports a solution from the MLS optimization engine. This solution defines the 
PPS investments made, such as numbers and locations of fences and sensors. Each solution 
asset is mapped to a simulated sensor within the Dante library, and each sensor’s coverage 
area is defined in such a way to make the architecture match the MLS engine’s “layered” 
design philosophy (see Figure 5). Several adjustments to Dante’s scenario building algorithm 
(e.g., extending fences and expanding buildings) were needed to ensure that the resulting 
design matched that of the MLS engine, with no unwanted gaps between investment assets 
and buildings. Figure 10 shows the Dante editor after MLS Solution A has been imported. 
This particular solution consists of four layers of fences, located at radii of 20, 30, 40, and 50 
meters from the target, and three layers of sensors, located at radii 40, 50, and 60 meters from 
the sensor. The fences are represented by white arc investments and the sensors are 
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represented by blue arc investments. The Dante UI gives the user the opportunity to 
interactively explore a variety of additional information about each investment.

Figure 10: Solution A Investments

Once a solution is selected, the user is given the ability to set the parameters for a scenario 
via the dialogue box shown in Figure 11. Here, the user can input values for fence breach 
time, intruder speed, RFT, and sensor assessment time (which includes average queue 
waiting time for the MLS models that incorporate the single queue strategy). If the “Use 
Variable Time/Speed” box is checked, the quantity will be given a Gaussian distribution with 
the entered standard deviation; otherwise, the quantity will be constant.  

Figure 11: Dante Scenario Parameters
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The Planning Mesh Resolution gives the resolution of the network on which the simulated 
intruder will be allowed to travel. Figure 12 shows Solution A with part of the intruder’s 
navigation mesh highlighted.

Figure 12: Solution A with Intruder Navigation Mesh

3.2. Dante Batch Analysis

Dante’s batch analysis feature allows the simulation engine to run a scenario multiple times 
with a random start position for the intruder along the navigation mesh perimeter. This 
randomization is in addition to the possibly random parameters shown in Figure 11.

One of the main differences between the MLS optimization engine and Dante is the way that 
the intruder chooses his path to the target. In MLS, the intruder is assumed to have perfect 
knowledge of the PPS, and therefore always chooses the MVP. In Dante, the intruder uses 
the A* search algorithm for determining the best path from his random start location to the 
target.  The A* algorithm is a heuristic where each link in the path is given a cost based on a 
multiplier of its length and a cost value. This cost value is based on geometric “costers” that 
increase the cost value for navigation links that cross a sensor’s detection area (cost based on 
the ViewShed Coster Weight slider seen in Figure 11) or a fence (cost based on the fence 
breach time). The algorithm then performs a greedy search for the path with the lowest cost.

When an intruder encounters a sensor, the sensor detects them with a probability imported 
from the MLS engine’s solution data. Each sensor possesses a timer that begins to run if the 
sensor reports the detection of an intruder, where the length of each timer is randomized 
based on the response force and assessment times provided for the scenario. The simulation 
run ends in a loss for the intruder if 1) any sensor’s timer runs to completion before the 
intruder reaches the target, or 2) the intruder’s path planning algorithm cannot find a possible 
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route to the target. Otherwise, the simulation ends in a win for the intruder. If an intruder 
encounters both a sensor and a fence in the same layer, the sensor will have a chance to 
detect the intruder before the intruder is delayed by the fence.

The results from a batch of scenario runs highlight how an intruder was 
successful/unsuccessful across the various runs. Figure 13 shows example results from a 
batch of 500 runs of a TA-V scenario.  The intruder lost (blue) 498 out of the 500 simulation 
runs, or 99.6% of the time. Dante not only reports how many times the intruder wins and 
loses, but also gives the exact reason why each loss occurred. This information could be 
extremely valuable in determining which sensors and sensor types are critical to the PPS.  

Figure 13: Dante Batch Analysis Results

Dante also provides a path display result that shows the routes taken by the intruder over all 
scenario runs, color-coded to show which were wins (red) and which were losses (blue) for 
the intruder. Win paths are useful in that they indicate areas with potentially weak defenses.  
Figure 14 displays a portion of this result for the batch of simulation runs from Figure 13.  
Here, a circle represents the beginning of a path, a square represents the end of a path, and 
red indicates that the intruder successfully reached the target.



25

Figure 14: Dante Batch Analysis Path Display Result

These results verify the MLS optimization engine calculation, which reported a PI of 0.997 
for this solution. We saw similar consistency between MLS PI and Dante batch analysis 
results for every solution that we tested.



26



27

4. SUMMARY AND CONCLUSIONS

The overarching goals of this LDRD project were achieved by creating an analysis 
framework and software implementation that:

 Automatically generates optimized and robust investment options for new and 
existing PPS designs

 Optimizes across multiple environmental and adversary scenarios to create a 
family of solutions that trade off performance and cost

 Models the impacts of system NAR/FAR on alarm station operators

To achieve these goals, we integrated the following capabilities into a rigorous 
analytic framework:  PPS architecture modeling, modeling of intruder and ASO 
behavior, and game theory.  These models were combined with a heuristic 
optimization engine to create an investment planning optimization which was 
validated using a real-world example simulated in a realistic 3D environment.   
Numerous artifacts were produced as a result of this effort including: four 
publications submitted to peer-reviewed journals, four technical advances, and a 
substantial library of software components which compose the framework. The 
external publications and conference presentations increase Sandia’s visibility in the 
areas of:

 Advanced PPS investment planning optimization
 Multi-objective stochastic optimization
 Measuring the impacts of high NAR/FAR on PPS performance

This research is also in direct support of the Resilience in Complex Systems Research 
Challenge, which focuses on:

 Quantification of resilience metrics
 Techniques for addressing system uncertainty
 Methods for validation and verification

Next steps in this research for the analytic 2D model could proceed in at least the 
following three areas. First, this model assumed a single attacker identifying the 
weakest path during the most vulnerable weather and visibility conditions. In practice 
there may be locations which, if attacked, render other defenses less potent, such as a 
control center for video surveillance feed, for example. This opens up the possibility 
that teams of attackers working collectively with different goals may be able to create 
more potent attacks. Second, integrating additional priority queuing ideas into the 
modeling, including and extending beyond what was discussed in this report, would 
also be valuable. Finally, the analysis performed in this LDRD assumed that each 
sensor had a fixed NAR/FAR. For many sensors, it is likely that the weather 
conditions and visibility impact the NAR/FAR. This modification is easy to 
incorporate but also very likely to suggest that ASO staffing could fluctuate based on 
the environmental conditions.

Going beyond our current model, we could investigate adding 3D and real-time 
aspects. The addition of a third dimension in and of itself would add substantial 
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complexity to the processing but also significantly increase the realism. By moving to 
real-time analysis, the system could be used to dynamically assess threats and predict 
likely attack vectors in order to assist an ASO in determining the best course of action 
given an active threat environment. The latter extension would support the next 
generation physical security goals of moving beyond the current detect/delay/respond 
paradigm, reducing response times and improving situational awareness.
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APPENDIX A:  CCTV OPERATOR LITERATURE REVIEW

Since we did not have access to actual operator performance data, we looked for data in the 
literature. We found a small set of studies that looked at changes in response time due to 
system reliability, but the target identification tasks were not analogous to ASO tasks. Due to 
lack of data, we have used notional values in our work.

In addition to the lack of available data on operator assessment times, we were also unable to 
find data on operator assessment performance, probability of correct assessment PA. An 
analogous domain is closed-circuit television (CCTV) operators in city surveillance. CCTV 
operators monitor multiple CCTVs to detect events and work in similar control room 
environments.  The main difference between the operator domains is the monitoring task. 
CCTV operator performance research assumes that the operator is continuously monitoring 
CCTVs for events. ASOs tend not to perform continuous monitoring events and instead are 
notified via alerts to assess an event.

Vigilance Decrement

Vigilance, or sustained attention, is defined as the ability of observers to maintain their focus 
of awareness and remain alert to stimuli in the environment over prolonged periods of time 
(Davies and Parasuraman, 1982). Vigilance tasks, or monitoring tasks, involve maintaining 
attention over long periods of time to detect small changes in the information presented. 
Mackworth (1950) discovered the vigilance decrement, which is a decline in detection 
performance over time. Mackworth and Sawin and Scerbo (1995) found a decrease in 
performance during the first half hour of a monitoring period, which then stabilizes at a lower 
level. During a 90-minute monitoring task, Donald (2014) found that 23% of study 
participants lost concentration in the first 30 minutes, 62% in the second 30 minutes, and 
50% in the final 30 minutes.  However, a third of the participants showed no disengagement 
over the entire period.

Many factors contribute to the vigilance decrement, and SAND2014-17929 provides a good 
overview on this topic.

Detection Performance

Research shows that 100% target detection is difficult to achieve. Targets are also more 
difficult to detect in complex, “busy” footage.

Unsurprisingly, events that are expected and easily visible are more likely to be detected 
(Wells et al., 2006). Yet ASOs operate in a domain where real events are rare, and intruders 
attempt to be stealthy. In a study with 16 monitors of prison scenes with little movement and 
conspicuous, detection rates varied from 85%-97% (Tickner et al, 1972). However, when 
similar prison scenes were used showing a lot of movement, detection rates decreased 
dramatically (32%-100% across experimental conditions). Perfect detection rates could only 
be achieved when only one display was observed at a time. Donald (2011) found that no 
participant was able to identify all visible targets and only 12% detected 75% or more targets. 
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Studies show a decline in performance as the number of CCTV monitors increase. Wallace 
and Diffley (1998) found that the majority of operators reported confidence in monitoring up 
to 16 screens, with over half stating that they were comfortable monitoring a maximum of 4 
screens. The operator-to-monitor ratio was 1:16 or higher in control rooms surveyed. In 
target detection tasks, as the number of monitors increased to 4, 9 and 16, detection 
performance measures gave accuracy of 83%, 84% and 64% respectively (Tickner and 
Poulton, 1973). Neil (2007) also found a decrease in target detection rates as the number of 
monitors increased from 1 (97%) to 6 (94%). He inferred that as the surveillance video 
became more complex, the number of screens monitored should be reduced to maintain the 
same detection rate. Rankin et al. (2012) agree that simple detection tasks produce better 
performance than more complex scenarios.

Operators can also suffer from change blindness. Change blindness occurs when people miss 
distinct changes in a visual scene (Dadashi et al, 2013). Becker and Pashler (2002) found that 
study participants failed to perceive changes in numbers in an array at which they had just 
looked and identified.  Silverman and Mack (2006) found that change detection performance 
improved as the number of changed letters in a row increased.

Video Quality

Video quality can impact detection performance and increase the vigilance decrement. Video 
quality can be naturally degraded due to environmental factors such as lighting conditions, 
rain and fog.  van Voortjuijsen (2005) degraded video quality by decreasing the frame rate 
and by increasing brightness. Study participant detection rates decreased as the video quality 
was degraded.  In a comparison of target detection between high and low video quality, 
vigilance decrement was observed in the low quality video experiment where none was 
observed with the high quality video (Parasuraman et al., 2009). Participants also had a high 
false alarm rate and lower detection rate when observing low quality video. 

Another aspect is how to determine the minimum video resolution required for detection. The 
Johnson Criteria (Johnson, 1985) is a widely used method for calculating the probability of 
target detection of an object imaged by an optical system. It has been widely used in the 
design of military systems. It can be used to determine the minimum resolution required to 
detect a target under various conditions. Sjaardema et al. (2015) found that while the criteria 
has been updated and improved over the years, it does not accurately predict target detection 
in all weather conditions and lacks modeling of the human element within a detection 
system.

The Rotakin test was developed by Jim Aldridge in 1989 to ensure the performance of 
CCTVs. The test is aimed at quantitatively determining deficiencies in the CCTV coverage 
by detecting blind spots and the limitations of operators in detecting camouflaged intruders in 
varying weather and lighting conditions. The Rotakin is designed to analyze three major 
performance parameters: viewing areas for cameras, size of images on monitors, and 
necessary observer response time. However, this research is specific to analog systems.
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The most recent CCTV standards in the 2009 Operational Requirements (Cohen et al., 2009) 
do not make mention of the Rotakin test. Instead it outlines a two-level process for operators. 
Level 1 is a practice in planning where thought is given to the threat itself rather than the 
CCTV system. At this level statement of problem, stakeholders, risk assessment, and success 
criteria are outlined. Level 2 provides height based levels of detail which outline general 
requirements of figure size in order to: monitor, detect, recognize, and identify threats. The 
manual acknowledges that these minimum images to screen ratios may be smaller for CCTV 
digital systems that have higher resolution but also may be larger when cameras are in areas 
with low lighting or poor angles of view. 
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